Наблюдательное основание закона Хаббла
К началу XX века представление о Вселенной как о статичном и неизменном образовании было общепринятым. Однако серия астрономических открытий, основанных на наблюдении галактик, радикально изменила эту картину. Основным инструментом послужило изучение спектров излучения галактик, в частности, сдвигов спектральных линий в сторону красного конца спектра — так называемое космологическое красное смещение.
Эдвин Хаббл в 1929 году, на основе наблюдений с помощью 100-дюймового телескопа на горе Вилсон, установил, что спектральные линии большинства далеких галактик сдвинуты в красную сторону, и что этот сдвиг тем больше, чем дальше галактика от нас. Это наблюдение означало, что галактики удаляются от Млечного Пути, и скорость их удаления пропорциональна расстоянию до них. Именно это эмпирическое соотношение и получило название закона Хаббла.
Формулировка закона Хаббла
Закон Хаббла выражается в виде простого линейного уравнения:
v = H0 ⋅ d
где:
Это уравнение отражает фундаментальную связь между расстоянием до астрономического объекта и его скоростью удаления, интерпретируемой как результат общего расширения пространства.
Космологическое красное смещение и его связь с расширением
Космологическое красное смещение возникает не как следствие эффекта Доплера в классическом понимании, а как результат расширения самого пространства. Фотон, испущенный далеким источником, в процессе путешествия к наблюдателю подвергается «растяжению» его длины волны, так как сама метрика пространства-времени изменяется во времени. Это означает, что свету требуется преодолеть увеличивающееся расстояние в расширяющейся Вселенной.
Красное смещение z определяется следующим образом:
$$ 1 + z = \frac{a(t_0)}{a(t_e)} $$
где a(t0) — масштабный множитель (scale factor) в момент наблюдения, a(te) — в момент испускания фотона. Таким образом, красное смещение напрямую связано с масштабным расширением Вселенной, отражая динамику изменения геометрии пространства.
Постоянная Хаббла и её измерение
Определение значения постоянной Хаббла — задача первостепенной важности для космологии. Оно осуществляется методами, которые можно разделить на две основные группы:
Локальные методы — основаны на наблюдении объектов, расстояния до которых можно измерить независимо от космологических моделей. Примеры включают цефеиды, сверхновые типа Ia, водяные мазеры и др. Эти методы дают оценки H0 ≈ 73 км/с/Мпк.
Космологические методы — используют параметры, полученные из анализа реликтового излучения, барионных акустических осцилляций и моделей ΛCDM. Эти дают более низкие значения: H0 ≈ 67 км/с/Мпк.
Различие между этими методами известно как «напряжение Хаббла» (Hubble tension) и является одной из главных нерешённых проблем современной космологии.
Интерпретация расширения: расширяется пространство, а не галактики
Важно подчеркнуть, что в рамках общей теории относительности расширение Вселенной не означает движение галактик в пространстве в обычном смысле. Речь идёт об изменении самой метрики пространства. Это расширение метрики Фридмана-Леметра-Робертсона-Уокера (FLRW) приводит к тому, что расстояния между несвязанными гравитационно объектами увеличиваются со временем.
Таким образом, галактики не «двигаются» через пространство, а «пассивно» следуют за расширяющейся геометрией, подобно точкам на поверхности раздувающегося воздушного шара.
Закон Хаббла в космологических моделях
Математической основой понимания расширения Вселенной служит решение уравнений Эйнштейна с космологической симметрией. При допущении однородности и изотропности пространство-времени описывается метрикой FLRW:
$$ ds^2 = -c^2 dt^2 + a^2(t) \left[ \frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2 \theta d\phi^2) \right] $$
где a(t) — масштабный множитель, k — параметр кривизны. Из уравнений Эйнштейна выводятся уравнения Фридмана:
$$ \left( \frac{\dot{a}}{a} \right)^2 = \frac{8 \pi G}{3} \rho - \frac{k c^2}{a^2} + \frac{\Lambda}{3} $$
Понятие темпа расширения связано с отношением $\frac{\dot{a}}{a}$, которое и определяет параметр Хаббла в данный момент времени:
$$ H(t) = \frac{\dot{a}(t)}{a(t)} $$
Таким образом, постоянная Хаббла H0 — это значение H(t) в текущую эпоху.
Уход за горизонт и сверхсветовые скорости удаления
Вследствие расширения метрики и роста масштаба a(t), возможна ситуация, при которой удалённая галактика удаляется от нас с «превышением» скорости света. Это не нарушает принципы СТО, поскольку здесь не идет речь о движении в локальном смысле, а об изменении расстояния в меняющейся метрике. Такой объект может оказаться за пределами наблюдаемой Вселенной — так называемым космологическим горизонтом.
Граница наблюдаемой Вселенной — это расстояние, на котором свет, испущенный сразу после рекомбинации, смог достичь нас за время существования Вселенной. Эта граница составляет примерно 46.5 миллиардов световых лет, несмотря на возраст Вселенной около 13.8 миллиардов лет — из-за продолжающегося расширения пространства.
Эволюция параметра Хаббла
Поскольку H(t) зависит от плотности энергии и уравнения состояния различных компонентов Вселенной (реликтовое излучение, барионы, тёмная материя, тёмная энергия), темп расширения менялся со временем. В ранней Вселенной, при доминировании излучения, рост масштаба происходил быстрее (a(t) ∝ t1/2), затем в эпоху доминирования материи — медленнее (a(t) ∝ t2/3). Наконец, в поздней Вселенной, под воздействием космологической постоянной, наблюдается ускоренное расширение (a(t) ∝ eHt).
Таким образом, современное значение H0 — лишь один из моментов в истории эволюции темпа расширения.
Закон Хаббла и возраст Вселенной
Поскольку постоянная Хаббла имеет размерность обратной единице времени, её можно использовать для оценки возраста Вселенной. В самой простой модели с постоянным темпом расширения возраст Вселенной приблизительно равен:
$$ t_0 \approx \frac{1}{H_0} $$
Для H0 ≈ 70 км/с/Мпк, что эквивалентно H0 ≈ 2.3 ⋅ 10−18 с−1, это даёт возраст порядка 13.8 миллиардов лет. Точные расчёты, учитывающие изменение темпа расширения, подтверждают эту оценку.
Космологическое значение закона Хаббла
Закон Хаббла — не просто эмпирическая зависимость, а фундаментальный закон, указывающий на динамическую природу Вселенной. Он лёг в основу современной космологии, обеспечил подтверждение Общей теории относительности на космологических масштабах и стал ключом к разработке модели Большого взрыва. Измерение H0 остаётся критически важным инструментом для понимания состава, геометрии и судьбы Вселенной.