Эффект Томсона

Определение эффекта Томсона

Эффект Томсона относится к числу термоэлектрических явлений, при которых в проводнике, по которому протекает электрический ток, возникает или поглощается тепло в случае, если вдоль проводника существует градиент температуры. В отличие от эффекта Джоуля–Ленца, где теплота выделяется всегда пропорционально квадрату тока, эффект Томсона зависит от направления тока относительно градиента температуры и может приводить как к нагреву, так и к охлаждению материала.

Математически эффект Томсона впервые был описан У. Томсоном (лордом Кельвином) в 1851 году и стал логическим дополнением к эффектам Зеебека и Пельтье, замыкая теоретическую схему термоэлектрических процессов.


Физическая природа явления

Эффект Томсона связан с перераспределением энергии носителей заряда (электронов или дырок) при их движении в условиях неоднородного температурного поля. В различных участках проводника электроны имеют разную среднюю энергию вследствие различной температуры. При прохождении тока через зоны с разными температурами возникает дополнительный перенос энергии, который приводит либо к выделению тепла, либо к его поглощению.

С физической точки зрения можно выделить два вклада в этот процесс:

  1. Джоуля–Ленца — всегда положительный, зависит только от силы тока и сопротивления.
  2. Томсона — может быть как положительным, так и отрицательным, в зависимости от материала и направления тока.

Математическое описание

Полная плотность тепловыделения q в проводнике при протекании тока в условиях температурного градиента выражается как:

$$ q = \rho j^2 + \mu j \frac{dT}{dx} $$

где:

  • ρ — удельное электрическое сопротивление материала,
  • j — плотность тока,
  • μ — коэффициент Томсона (В/К),
  • $\frac{dT}{dx}$ — градиент температуры вдоль проводника.

Коэффициент Томсона μ характеризует величину теплового эффекта и является индивидуальной константой для каждого материала. В отличие от коэффициента Пельтье, который измеряется на контакте двух материалов, μ относится к однородному проводнику.

Если μ > 0, то при направлении тока от холодного конца к горячему происходит выделение тепла, а при обратном направлении — поглощение. Если μ < 0, то ситуация противоположная.


Связь с другими термоэлектрическими эффектами

Томсон показал, что существует взаимосвязь между тремя термоэлектрическими коэффициентами — Зеебека (S), Пельтье (Π) и Томсона (μ):

$$ \mu = T \frac{dS}{dT} $$

Π = ST

где T — абсолютная температура. Эти соотношения известны как уравнения Томсона и играют фундаментальную роль в термоэлектрической теории, позволяя определять коэффициенты одного эффекта через экспериментальные данные о другом.


Экспериментальное измерение

Для измерения эффекта Томсона применяют образцы проводников или полупроводников, по которым пропускают постоянный ток, создавая контролируемый градиент температуры. Регистрируют изменение теплового баланса, исключая вклад джоулева тепла (путём сравнения случаев с противоположным направлением тока). Разность в выделении тепла в двух направлениях связана именно с эффектом Томсона.

Величины коэффициента Томсона обычно малы (порядка 10−6 В/К), но в полупроводниках они могут достигать существенно больших значений, что делает эффект важным для термоэлектрических генераторов и холодильников.


Применения и значение

  1. Термоэлектрическая метрология — эффект Томсона используется для уточнения значений коэффициента Зеебека через температурную зависимость.
  2. Диагностика материалов — по величине μ можно судить о характере носителей заряда (электроны или дырки) и особенностях электронного спектра вещества.
  3. Тепловое управление — в высокоточных электронных системах эффект Томсона учитывают для расчёта тепловых режимов при наличии градиентов температуры.

Особенности в металлах и полупроводниках

  • В металлах эффект Томсона обычно слаб, так как электронный газ близок к вырожденному, и изменение средней энергии носителей при изменении температуры мало.
  • В полупроводниках эффект выражен сильнее из-за экспоненциальной зависимости концентрации носителей от температуры и наличия как электронного, так и дырочного типов проводимости.