Параметр порядка

Параметр порядка является фундаментальной концепцией в теории фазовых переходов и физике конденсированного состояния. Он описывает степень упорядоченности системы и количественно характеризует изменение симметрии между различными фазами вещества. Введение параметра порядка позволяет построить строгую математическую и физическую модель фазового перехода, а также предсказать поведение системы вблизи критических точек.


Параметр порядка представляет собой физическую величину (скаляр, вектор или тензор), которая принимает различные значения в разных фазах вещества и изменяется скачкообразно или непрерывно при переходе между ними.

  • В симметричной фазе (обычно высокотемпературной) параметр порядка равен нулю.
  • В фазе с нарушенной симметрией (обычно низкотемпературной) параметр порядка отличен от нуля.

Таким образом, параметр порядка отражает изменение симметрии при фазовом переходе и может быть выбран так, чтобы он был чувствителен именно к этому изменению.


Примеры параметров порядка

  1. Ферромагнетик: Параметр порядка — намагниченность M.

    • При T > TC (температура Кюри) M = 0 — система парамагнитна.
    • При T < TC M ≠ 0 — возникает спонтанная намагниченность.
  2. Сверхпроводник: Параметр порядка — комплексная волновая функция ψ(r), модуля которой |ψ| пропорциональна плотности сверхпроводящих носителей заряда.

    • В нормальной фазе |ψ| = 0.
    • В сверхпроводящей фазе |ψ| > 0.
  3. Жидкость–твердое тело: Параметр порядка может быть связан с амплитудой периодических компонент плотности. В жидкой фазе пространственная периодичность отсутствует (ρG = 0), в кристаллической — ρG ≠ 0.

  4. Жидкий кристалл: Для нематической фазы параметром порядка служит тензор ориентационного порядка, отражающий степень выравнивания длинных молекул.


Математическое описание

Пусть параметр порядка обозначен как η. Его зависимость от температуры T при фазовом переходе второго рода может быть приближённо описана степенным законом:

η(T) ∝ (TC − T)β,  T → TC

где βкритический индекс параметра порядка, зависящий от универсального класса фазового перехода.

При переходах первого рода параметр порядка изменяется скачком при T = TC, что соответствует дискретной перестройке структуры или состояния системы.


Симметрийные свойства

Выбор параметра порядка связан с симметрийными соображениями:

  • Если при переходе симметрия увеличивается, параметр порядка должен обращаться в нуль в симметричной фазе.

  • Группы симметрии высокотемпературной и низкотемпературной фаз связаны соотношением вложенности:

    Gнизк. ⊂ Gвыс.

    Параметр порядка трансформируется по определённому неприводимому представлению группы Gвыс..


Роль в теории Ландау

В феноменологической теории Ландау свободная энергия системы F раскладывается в ряд по степеням параметра порядка:

F(η) = F0 + a(T)η2 + bη4 + …

где:

  • a(T) = a0(T − TC) меняет знак при T = TC,
  • b > 0 обеспечивает устойчивость фазы,
  • знак a(T) определяет, находится ли система в симметричной (η = 0) или упорядоченной (η ≠ 0) фазе.

Минимизация F(η) по η даёт температурную зависимость параметра порядка, согласующуюся с наблюдаемыми экспериментальными кривыми.


Критическое поведение

Вблизи точки фазового перехода второго рода:

  • Параметр порядка стремится к нулю по степенному закону.
  • Возникают длинноволновые флуктуации параметра порядка, приводящие к росту корреляционной длины ξ ∝ |T − TC|ν.
  • Аномалии теплоёмкости, магнитной восприимчивости или других откликов напрямую связаны с поведением η(T).

Флуктуации параметра порядка

При удалении от термодинамического предела или вблизи критической точки флуктуации становятся значительными. Их описание требует введения корреляционных функций:

G(r) = ⟨η(r0)η(r0 + r)⟩

Поведение G(r) определяет наличие дальнего или ближнего порядка в системе. В критической точке корреляционная длина ξ расходится, и система приобретает масштабную инвариантность.


Параметр порядка в квантовых фазовых переходах

В отличие от классических переходов, квантовые фазовые переходы происходят при T = 0 под действием изменения внешнего параметра (давления, магнитного поля, концентрации). Параметр порядка в этом случае определяется квантовыми флуктуациями и подчиняется иным законам масштабирования, где роль «температуры» играет энергия возбуждений.